Rainbow tetrahedra in Cayley graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow tetrahedra in Cayley graphs

Let Γn be the complete undirected Cayley graph of the odd cyclic group Zn. Connected graphs whose vertices are rainbow tetrahedra in Γn are studied, with any two such vertices adjacent if and only if they share (as tetrahedra) precisely two distinct triangles. This yields graphs G of largest degree 6, asymptotic diameter |V (G)| and almost all vertices with degree: (a) 6 in G; (b) 4 in exactly ...

متن کامل

Cosines and Cayley, Triangles and Tetrahedra

This article surveys some of the more aesthetically appealing and useful formulas relating distances, areas, and angles in triangles and tetrahedra. For example, a somewhat neglected trigonometric identity involving only the cosines of a triangle is an instance of the famous Cayley cubic surface. While most of these formulas are well known, some novel identities also make an appearance. Heron’s...

متن کامل

Cayley graphs - Cayley nets

It is, however, not clear how to choose the generators to produce special graphs. We know many topologies and their generators, but many more may be constructed in the future, having better properties (in terms of diameter, nodal degree and connectivity) than for instance the hypercube. I will present several graphs which connect rings using the generator g 1 and some additional generators.

متن کامل

Vector Space semi-Cayley Graphs

The original aim of this paper is to construct a graph associated to a vector space. By inspiration of the classical definition for the Cayley graph related to a group we define Cayley graph of a vector space. The vector space Cayley graph ${rm Cay(mathcal{V},S)}$ is a graph with the vertex set the whole vectors of the vector space $mathcal{V}$ and two vectors $v_1,v_2$ join by an edge whenever...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2015

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.1834